.


:




:

































 

 

 

 


Comparison with other methods of power generation

Electricity generation

Most hydroelectric power comes from the potential energy of dammed water driving a water turbine and generator. In this case the energy extracted from the water depends on the volume and on the difference in height between the source and the water's outflow. This height difference is called the head. The amount of potential energy in water is proportional to the head. To obtain very high head, water for a hydraulic turbine may be run through a large pipe called a penstock.

Pumped storage hydroelectricity produces electricity to supply high peak demands by moving water between reservoirs at different elevations. At times of low electrical demand, excess generation capacity is used to pump water into the higher reservoir. When there is higher demand, water is released back into the lower reservoir through a turbine. Pumped storage schemes currently provide the only commercially important means of large-scale grid energy storage and improve the daily load factor of the generation system. Hydroelectric plants with no reservoir capacity are called run-of-the-river plants. A tidal power plant makes use of the daily rise and fall of water due to tides; such sources are highly predictable, and if conditions permit construction of reservoirs, can also be dispatch able to generate power during high demand periods. Less common types of hydro schemes use water's kinetic energy or undammed sources such as undershot waterwheels.

A simple formula for approximating electric power production at a hydroelectric plant is: P = hrgk, where P is Power in kilowatts, h is height in meters, r is flow rate in cubic meters per second, g is acceleration due to gravity of 9.8 m/s2, and k is a coefficient of efficiency ranging from 0 to 1. Efficiency is often higher with larger and more modern turbines. Annual electric energy production depends on the available water supply. In some installations the water flow rate can vary by a factor of 10:1 over the course of a year.

Industrial hydroelectric plants. While many hydroelectric projects supply public electricity networks, some are created to serve specific industrial enterprises. Dedicated hydroelectric projects are often built to provide the substantial amounts of electricity needed for aluminium electrolytic plants. In the Scottish Highlands there are examples at Kinlochleven and Lochaber, constructed during the early years of the 20th century. The Grand Coulee Dam, long the world's largest, switched to support Alcoa aluminum in Bellingham, Washington for America's World War II airplanes before it was allowed to provide irrigation and power to citizens (in addition to aluminum power) after the war. In Suriname, the Brokopondo Reservoir was constructed to provide electricity for the Alcoa aluminium industry. New Zealand's Manapouri Power Station was constructed to supply electricity to the aluminium smelter at Tiwai Point.

Small-scale hydro-electric plants. Although large hydroelectric installations generate most of the world's hydroelectricity, some situations require small hydro plants. These are defined as plants producing up to 10 megawatts, or projects up to 30 megawatts in North America. A small hydro plant may be connected to a distribution grid or may provide power only to an isolated community. Small hydro projects generally do not require the protracted economic, engineering and environmental studies associated with large projects, and often can be completed much more quickly. A small hydro development may be installed along with a project for flood control, irrigation or other purposes, providing extra revenue for project costs. In areas that formerly used waterwheels for milling and other purposes, often the site can be redeveloped for electric power production, possibly eliminating the new environmental impact of any demolition operation. Small hydro can be further divided into mini-hydro, units around 1 MW in size, and micro hydro with units as large as 100 kW down to a couple of kW rating.Small hydro schemes are particularly popular in China, which has over 50% of world small hydro capacity.

Small hydro units in the range 1 MW to about 30 MW are often available from multiple manufacturers using standardized "water to wire" packages; a single contractor can provide all the major mechanical and electrical equipment (turbine, generator, controls, switchgear), selecting from several standard designs to fit the site conditions. Micro hydro projects use a diverse range of equipment; in the smaller sizes industrial centrifugal pumps can be used as turbines, with comparatively low purchase cost compared to purpose-built turbines.

Advantages. The major advantage of hydroelectricity is elimination of the cost of fuel. The cost of operating a hydroelectric plant is nearly immune to increases in the cost of fossil fuels such as oil, natural gas or coal, and no imports are needed.Hydroelectric plants also tend to have longer economic lives than fuel-fired generation, with some plants now in service which were built 50 to 100 years ago. Operating labor cost is also usually low, as plants are automated and have few personnel on site during normal operation.Where a dam serves multiple purposes, a hydroelectric plant may be added with relatively low construction cost, providing a useful revenue stream to offset the costs of dam operation. It has been calculated that the sale of electricity from the Three Gorges Dam will cover the construction costs after 5 to 8 years of full generation.

Related activities. Reservoirs created by hydroelectric schemes often provide facilities for water sports, and become tourist attractions in themselves. Multi-use dams installed for irrigation support agriculture with a relatively constant water supply. Large hydro dams can control floods, which would otherwise affect people living downstream of the project.

Disadvantages

Environmental damage. Hydroelectric projects can be disruptive to surrounding aquatic ecosystems both upstream and downstream of the plant site. For instance, studies have shown that dams along the Atlantic and Pacific coasts of North America have reduced salmon populations by preventing access to spawning grounds upstream, even though most dams in salmon habitat have fish ladders installed. Salmon spawn are also harmed on their migration to sea when they must pass through turbines. This has led to some areas transporting spawn downstream by barge during parts of the year. In some cases dams have been demolished (for example the Marmot Dam demolished in 2007) because of impact on fish. Turbine and power-plant designs that are easier on aquatic life are an active area of research. Mitigation measures such as fish ladders may be required at new projects or as a condition of re-licensing of existing projects.

Generation of hydroelectric power changes the downstream river environment. Water exiting a turbine usually contains very little suspended sediment, which can lead to scouring of river beds and loss of riverbanks. Since turbine gates are often opened intermittently, rapid or even daily fluctuations in river flow are observed. For example, in the Grand Canyon, the daily cyclic flow variation caused by Glen Canyon Dam was found to be contributing to erosion of sand bars. Dissolved oxygen content of the water may change from pre-construction conditions. Depending on the location, water exiting from turbines is typically much warmer than the pre-dam water, which can change aquatic fauna populations, including endangered species, and prevent natural freezing processes from occurring. Some hydroelectric projects also use canals to divert a river at a shallower gradient to increase the head of the scheme. In some cases, the entire river may be diverted leaving a dry riverbed. Examples include the Tekapo and Pukaki Rivers.

Population relocation. Another disadvantage of hydroelectric dams is the need to relocate the people living where the reservoirs are planned. In February 2008, it was estimated that 40-80 million people worldwide had been physically displaced as a direct result of dam construction. In many cases, no amount of compensation can replace ancestral and cultural attachments to places that have spiritual value to the displaced population. Additionally, historically and culturally important sites can be flooded and lost. Such problems have arisen at the Three Gorges Dam project in China, the Clyde Dam in New Zealand and the Ilısu Dam in Southeastern Turkey.

Dam failures. Failures of large dams, while rare, are potentially serious the Banqiao Dam failure in Southern China resulted in the deaths of 171,000 people and left millions homeless. Dams may be subject to enemy bombardment during wartime, sabotage and terrorism. Smaller dams and micro hydro facilities are less vulnerable to these threats. The creation of a dam in a geologically inappropriate location may cause disasters like the one of the Vajont Dam in Italy, where almost 2000 people died, in 1963.

Affected by flow shortage. Changes in the amount of river flow will correlate with the amount of energy produced by a dam. Because of global warming, the volume of glaciers has decreased, such as the North Cascades glaciers, which have lost a third of their volume since 1950, resulting in stream flows that have decreased by as much as 34%. The result of diminished river flow can be power shortages in areas that depend heavily on hydroelectric power.

Comparison with other methods of power generation

Hydroelectricity eliminates the flue gas emissions from fossil fuel combustion, including pollutants such as sulfur dioxide, nitric oxide, carbon monoxide, dust, and mercury in the coal. Hydroelectricity also avoids the hazards of coal mining and the indirect health effects of coal emissions. Compared to nuclear power, hydroelectricity generates no nuclear waste, has none of the dangers associated with uranium mining, nor nuclear leaks. Unlike uranium, hydroelectricity is also a renewable energy source. Compared to wind farms, hydroelectricity power plants have a more predictable load factor. If the project has a storage reservoir, it can be dispatched to generate power when needed. Hydroelectric plants can be easily regulated to follow variations in power demand.

Unlike fossil-fuel combustion turbines, construction of a hydroelectric plant requires a long lead-time for site studies, hydrological studies, and environmental impact assessment. Hydrological data up to 50 years or more is usually required to determine the best sites and operating regimes for a large hydroelectric plant. Unlike plants operated by fuel, such as fossil or nuclear energy, the number of sites that can be economically developed for hydroelectric production is limited; in many areas the most cost effective sites have already been exploited. New hydro sites tend to be far from population centers and require extensive transmission lines. Hydroelectric generation depends on rainfall in the watershed, and may be significantly reduced in years of low rainfall or snowmelt. Long-term energy yield may be affected by climate change. Utilities that primarily use hydroelectric power may spend additional capital to build extra capacity to ensure sufficient power is available in low water years.

In parts of Canada (the provinces of British Columbia, Manitoba, Ontario, Quebec, Newfoundland and Labrador) hydroelectricity is used so extensively that the word "hydro" is often used to refer to any electricity delivered by a power utility. The government-run power utilities in these provinces are called BC Hydro, Manitoba Hydro, Hydro One (formerly "Ontario Hydro"), Hydro-Québec and Newfoundland and Labrador Hydro respectively. Hydro-Québec is the world's largest hydroelectric generating company, with a total installed capacity (2007) of 35,647 MW.

. - , , . . , , . , 715,000 2005. 19% ( 16% 2003), 63% .

. , . . . . , .

, . , , . , . . . - ; - , , , . , .

, : P = hrgk, P - , h - , r - , g - 9,8 /2, k - , 0 1. . . 10:1 .

. , , . , . Kinlochleven Lochaber, 20- . The Grand Coulee Dam , Alcoa alluminium Bellingham, , , ( ). , Brokopondo Reservoir , Alcoa aluminium. Manapouri , Tiwai Point.

, . 10 30 . . , , . , , . , , , . , 1 , , 100 . , 50% .

1 30 ; (, , , ) . ; , , .

. . , , , . , , , 50 100 . , . , , , , . , Three Gorges Dam 5 - 8 .

. , . , . , , .

. . . , , , , , . , . , . ( Marmot Dam 2007) - . , . , , .

. , . , . , , , Glen Canyon Dam, . . , , , , , . , , . , , . Tekapo Pukaki.

. , . 2008, , 40-80 - . , , . , . Three Gorges Dam , Clyde Dam Ilısu Dam - .

. , , - Banqiao Dam 171,000 . , . . Vajont Dam , 2000 1963.

. . - , , North Cascades, 1950, 34%. , .

. , , , , , , . , . , , . , .

, . , , . , .

, , , . 50 . , , , ; . . , - . . , .

( , , , , ) , "" , . , , ( ), -, . Hydro-Qubec - , (2007) 35,647 .



<== | ==>
 | 12- .
:


: 2017-02-11; !; : 524 |


:

:

. .
==> ...

1434 - | 1399 -


© 2015-2024 lektsii.org - -

: 0.039 .