.


:




:

































 

 

 

 


, , 1-00

. ..

-

-

, , 1-00

:

.., ,

:

.., - .-. , . ,

.., - .,

 

2016

, , , , , [1, 2]. , , . , () () [3 5].

, (). [6 9]. , . , , . , - [10]. , , , .

. [11, 12] , . [10, 13, 14] - . , .

, 1-00 .

1.

1-00.

10 60 . 120 . [5] 400 . N =2, 4, 8, ε = 1,33, 2,66 5,33 . [5]

, (1.1)

N ;

φ .

INSTRON 8801. 3 . l0 =4 . . ξ=10-3 -1. , .

1-00 Olympus GX51. () JEOL JEM-2100 - . 1 2.

() JSM-6490LV JEOL.

2.

α- ( 2.1). d = 272 . σ = 80721 : δ = 153 % δ =10,03,0 % y=3,00,5 %.

2.1 1-00

 

( 2.1). . , .

 

2.1

σ , σ 0,2, δ, % δ, % y, %
80721 67316 153 10,03,0 3,00,5
ε = 1,33 85939 77641 153 7,01,3 29,04,0
ε = 2,66 89348 81736 142 5,00,8 57,07,0
ε = 5,33 94253 89119 142 4,00,6 60,09,0

 

( 2.2) ε≈11 %, , , . , , , .. , , , . , 2.1.

2.2 1-00; 1 ; 2 ε = 1,33;

3 ε = 2,66; 4 ε = 5,33;

2.3 1-00 :

; 1,33; 2,66; 5,33. .

 

- , ε = 1,33 ( 2.4, ). , . , 1 2, . . / . . . , /

ε = 2,66 ( 2.4, ) - . ε = 1,33 d = 0,600,04 . , . (?) , (?) .

ε = 5,33 / 0,250,02 ( 2.4, ). . , 1 2, , . (?). / ?/

2.4 1-00 : 1,33; 2,66; 5,33.

 

, ( 2.5).

( 2.5, ) , . , .

, . . , , . .

 

2.5 1-00:

; 1,33; 2,66; 5,33. .

.

, , , . ( 2.6, ). , . / ?/ , ( 2.1).

, , . ( 2.6, ). / , /

ε = 1,33 . , . .

2,66 5,33 ( 2.6, , ) . . ε = 2,66 ( 2.6, ). ( 2.2).

ε = 5,33 ( 2.6, ). , ε = 2,66, . ( 2.2).

 

2.6 1-0: , ε = 2,66; ε = 5,33. . . .

2.2

, %
 
ε = 1,33  
ε = 2,66  
ε = 5,33  

 

3.

, , , . , .. , . - , / . / , , , ./

/2- 3- , 1- 4- . ? , : 1- 4- , 2- 3- , ./

 

 

1. . ., . . . . .: , 1974. 368 . [S. G. Glazunov and V. N. Moiseeva, Titanium alloys. Structural titanium alloys, (in Russian). Moscow: Metallurgical engineering, 1974. ]

2. . ., . ., . . : . .: , 2005. 432 . [B. A. Kolachev, V. I. Elagin and V. A. Livanov, Metallurgical engineering and heat treatment of non-ferrous metals and alloys, (in Russian). Moscow: Moscow Institute of Steel and Alloys MISIS, 2005. ]

3. . ., . . . .: , 2007. 398 . [R. Z. Valiev and I. V. Aleksandrov, Volume nanostructured metallic materials, (in Russian). Moscow: Akademkniga, 2007. ]

4. Valiev R. Z., Islamgaliev R. K., Alexandrov I. V. Bulk nanostructured materials from severe plastic deformation, in Progress in Material Science, vol. 45, no. 2, pp. 102189, 2000.

5. . . : . . : , 2008. 313 . [F. Z. Utyashev, Modern methods of severe plastic deformation, (in Russian). Ufa: Ufa State Aviation Technical University UGATU, 2008. ]

6. Ruslan Z. Valiev, Terence G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, in Progress in Materials Science, vol. 51, pp. 881981, 2006.

7. Stolyarov V. V., Zhu Y. T., Lowe T. C., Islamgaliev R. K., Valiev R. Z. A two step SPD processing of ultrafine-grained titanium, in NanoStructured Materials, vol. 11, no. 7, pp. 947954, 1999.

8. Sergueeva A. V., Stolyarov V. V.,.Valiev R. Z, Mukherjee A. K. Advanced mechanical properties of pure titanium with ultrafine grained structure, in Scripta Materialia, vol. 45, pp. 747752, 2001.

9. Raab G. I., Soshnikova E. P., Valiev R. Z. Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti, in Materials Science and Engineering A, vol. 387, pp. 674677, 2004.

10. . . : . . . . . : , 2013. 17 . [M. V. Fesenyuk, Toughness and fatigue resistance of metallic materials after equal channel angular pressing: auto referat of PhD Thesis, (in Russian). Samara: Samara state technical university/, 2013. ]

11. Young Gun Ko, Dong Hyuk Shin, Kyung-Tae Park, Chong Soo Lee An analysis of the strain hardening behavior of ultra-fine grain pure titanium, in Scripta Materialia, no. 54, pp. 17851789, 2006.

12. Sabirov I., Valiev R. Z., Semenova I. P., Pippan R. Effect of equal channel angular pressing on the fracture behavior of commercially pure titanium, in Metallurgical and Materials Transactions A, vol. 41 A, pp. 727733, March 2010.

13. . ., . ., . ., . ., . ., . ., . // . 2012. 67. . 1923. [G. V. Klevtsov, R. Z. Valiev, I. P. Semenova, N. A. Klevtsova, A. A. Matching, M. R. Kashapov and A. Class, Dynamic properties and fracture mechanisms of nanostructured titanium and titanium alloy for the manufacture of medical devices, (in Russian), in Vestnik of the Novgorod State University, no. 67, pp. 19-23, 2012. ]

14. . . , : . . - . . : , 2012. 37 . [N. A. Klevtsova, Development of scientific bases increase the strength of materials by severe impacts, hardening surface treatment and coating: auto referat of PhD Thesis, (in Russian). Orenburg: Orenburg state university/, 2012. ]

15. Stolyarov V. V., Zhu Y. T., Alexandrov I. V., Lowe T. C., Valiev R. Z. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling, in Materials Science and Engineering, vol. A343, pp. 4350, (2003).

16. . ., . ., . . . .: - , 1960. 91 . [J. B. Friedman, T. A. Gordeeva and A. M. Zaitsev, Structure and analysis of fracture of metals, (in Russian). Moscow: State scientific and technical publishing engineering literature, 1960. ]

17. ., . . . . .: , 1986. 223 . [L. Engel and G. Klingele, Scanning electron microscopy. Destruction. Reference Book, (in Russian). Moscow: Metallurgical engineering, 1986. ]

18. : . . . . / . . . .: , 1982. 489 . [ Fractography and satin fraktogramm, (in Russian). Moscow: Metallurgical engineering, 1982.]

 



<== | ==>
8-926-313-71-76, . | 
:


: 2016-12-17; !; : 743 |


:

:

, ; , .
==> ...

1575 - | 1365 -


© 2015-2024 lektsii.org - -

: 0.032 .