Лекции.Орг


Поиск:




Нейронные сети как Ассоциативная память




Ассоциативная память используется в задачах хранения, ассоциирования и распознавания образов.

Хранение представляет собой процесс записи входного образа в структуре так называемой автоассоциативной сети (autoassociative network) или сети Хопфильда (Hopfield network) с целью последующего распознавания входных образов не обязательно точно совпадающих с содержимым памяти.

Пример структуры автоассоциативной сети показан на рис.2.45.

Нейронная сеть Хопфилда состоит из искусственных нейронов. Каждый нейрон в сети связан с каждым другим нейроном. Имеются также внешние входы в нейроны и внешние выходы. Каждый нейрон системы может принимать одно из двух состояний (что аналогично выходу нейрона с пороговой функцией активации): .

Благодаря своей биполярной природе нейроны сети Хопфилда иногда называют спинами. Взаимодействие спинов сети описывается выражением:

где - элемент матрицы взаимодействий W, которая состоит из весовых коэффициентов связей между нейронами.

Рис. 2.45. Структура сети с тремя нейронами

 

В эту матрицу в процессе обучения записывается N «образов» n -мерных бинарных векторов. В сети Хопфилда матрица связей является симметричной , а диагональные элементы матрицы полагаются равными нулю (), что исключает эффект воздействия нейрона на самого себя и является необходимым для сети Хопфилда, но не достаточным условием, устойчивости в процессе работы сети.

«Реакция» (выход) такой сети является «динамической». Входной образец поступает на внешние входы и вызывает активацию спинов. Каждый нейрон вычисляет свои значения и посылает их обратно ко всем нейронам, исключая себя. В основе функционирования таких сетей лежит итеративный принцип работы. На каждой итерации происходит обработка результата, полученного на предыдущем шаге.

Циркуляция информации в нейронной сети происходит до тех пор, пока не установится состояние равновесия, т.е. значения её выходов перестанут изменяться. В отличие от многих нейронных сетей, функционирующих до получения ответа через определённое количество тактов, сети Хопфилда функционируют до достижения равновесия, когда следующее состояние сети в точности равно предыдущему. Начальное состояние является входным образом, а при равновесии получают выходной образ. Сети Хопфилда являются частным случаем рекуррентных сетей, в которых сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя (обратная связь).

Рекуррентная сеть Хопфилда «фильтрует» входные данные, возвращаясь к устойчивому состоянию и, таким образом, позволяет решать задачи сжатия данных и построения ассоциативной памяти.

Нейронные сети Кохонена

Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из некоторого количества n параллельно действующих линейных элементов. Все они имеют одинаковое число входов m и получают на свои входы один и тот же вектор входных сигналов x = (x 1,... xm). На выходе j- го линейного элемента получаем сигнал:

,

где — весовой коэффициент i- го входа j- го нейрона,

— пороговый коэффициент.

После прохождения слоя линейных элементов сигналы посылаются на обработку по правилу «победитель забирает всё»: среди выходных сигналов yj ищется максимальный; его номер

j max = argmax j { yj }.

Окончательно, на выходе сигнал с номером j max равен единице, остальные — нулю. Если максимум одновременно достигается для нескольких j max, то либо принимают все соответствующие сигналы равными единице, либо только первый в списке (по соглашению). Сети используются для задач кластеризации многомерных данных. По способам настройки входных весов сумматоров и по решаемым задачам различают много разновидностей сетей Кохонена.

Адаптивные сети

Адаптивными сети называются из-за наличия в них вектора настраиваемых параметров. Сеть имеет L слоев (l =0,1,…, L); l = 0 представляет входной слой. Слой l имеет N (l) вершин. Выходное значение вершины зависит от входных значений и параметров функции активации вершины. Обозначим выход -той вершины слоя как . Этот выход является результатом вычисления функции активации:

,

где – параметры функции активации -той вершины слоя .

На рис.2.46 показана типовая многослойная архитектура адаптивной сети.

В ходе адаптивного итерационного процесса сеть обучается устанавливать взаимоотношения между заданной исходной информацией и выходными результатами. Иначе говоря, структура сети по определенным алгоритмам подстраивается таким образом, чтобы минимизировать критерии расхождения входных и выходных параметров. Сети данного вида широко используются в задачах управления.

Рис. 2.46. Архитектура адаптивной сети.





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 840 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

661 - | 515 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.