Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основы физики взаимодействия ионизирующих излучений с полупроводниками




Введение

Влиянию проникающей радиации на материалы электронной техники, полупроводниковые приборы (ПП) и интегральные схемы (ИС) в настоящее время в научно-техническом мире уделяется достаточно большое внимание. Как правило, исследования по данной тематике ведутся по трем основным направлениям:

· физика взаимодействия ионизирующего излучения с твердым телом;

· применение проникающей радиации в технологии микроэлектроники;

· исследования деградации полупроводниковых приборов и микросхем при их эксплуатации в условиях воздействия проникающей радиации.

Первое направление исследований определяет научный базис для решения прикладных проблем: знания в области физики взаимодействия проникающей радиации с твердым телом необходимы как для обоснованного выбора оптимальных режимов радиационно-технологических процессов (РТП), так и для корректного проведения радиационных испытаний изделий электроники и микроэлектроники и последующего анализа и интерпретации результатов испытаний.

Применение проникающей радиации в технологии ПП и ИС представляет большой практический интерес с точки зрения возможности управления их параметрами. Следует отметить, что актуальность задачи регулирования электрических параметров и оптимизации технологического производства ПП и ИС непрерывно растёт в связи с необходимостью увеличения объема выпуска приборов, постоянным усложнением полупроводниковой технологии и уменьшением геометрических размеров активных областей полупроводниковых приборных структур.

Актуальность тематики радиационной-стимулированной деградации ПП и ИС и
определения уровней радиационной стойкости элементной базы во многом обусловлена
бурным развитием космической техники. Среди многочисленных факторов, влияющих на работоспособность бортовой аппаратуры и элементной базы при их эксплуатации, особое значение имеет воздействие полей ионизирующих излучений (ИИ) космического пространства (КП) — высокоэнергетических электронов, протонов и тяжелых ионов. Влияние ИИ КП на элементы, входящие в состав бортовой аппаратуры, может привести к их отказу как за счет деградации характеристик вследствие накопления поглощенной дозы, так и за счет одиночных радиационных эффектов, имеющих вероятностный характер. Таким образом, определение радиационной стойкости ПП и ИС является одним из важных элементов задачи
обеспечения надежности и безотказности бортовой аппаратуры и космического аппарата (КА) в целом.

В настоящем издании излагается материал, посвященный радиационным эффектам в кремниевых ПП и ИС при воздействии ИИ КП.

В первом разделе кратко проанализированы характеристики радиационных условий в окружающем пространстве. При этом основное внимание уделено внешним воздействующим факторам КП, и в частности, радиационным факторам КП, но также кратко рассмотрены характеристики ИИ ядерного взрыва (ЯВ) и атомных электростанций (АЭС). Рассмотрены некоторые физические величины и единицы их измерения, с которыми постоянно приходится иметь дело при определении радиационных нагрузок на аппаратуру и ее комплектующие, при расчетной оценке стойкости ПП и ИС, при организации, проведении и обработке результатов радиационных испытаний и исследований, проводимых в лабораторных условиях. Также кратко проанализированы основные физические процессы при взаимодействии ионизирующих излучений с полупроводниковыми материалами.

Второй раздел посвящен деградации параметров биполярных приборных структур (диодов и транзисторов) вследствие введения структурных дефектов при радиационном облучении.

Третий раздел посвящен различным аспектам радиационно-индуцированного накопления заряда в структуре Si/SiO2 и влиянию этого процесса на характеристики ПП и ИС. Здесь также рассмотрено влияние температуры и электрического режима при облучении ПП и ИС, а также интенсивности облучения, на процесс радиационно-индуцированного накопления заряда. Проанализированы процессы релаксации (отжига) накопленного при облучении заряда. Рассмотрены некоторые особенности радиационного накопления заряда, связанные с полевыми оксидами, а также со встроенными оксидами КНИ-структур. Рассмотрены основные методические моменты, которые необходимо учитывать при проведении радиационных испытаний ПП и ИС.

В четвертом разделе рассмотрены радиационные эффекты в биполярных транзисторах, а также изготовленных по биполярной технологии аналоговых и цифровых интегральных схемах, характерные для длительного низкоинтенсивного радиационного облучения при эксплуатации в условиях космического пространства.

В пятом разделе рассмотрены основные виды и классификация одиночных радиационных эффектов (одиночных событий) при воздействии отдельных заряженных частиц космического пространства. Приведено описание физических процессов, вследствие которых возникают одиночные события. Рассмотрены основные экспериментальные и расчетно-экспериментальные методы, использующиеся для получения информации о чувствительности изделий полупроводниковой электроники к одиночным событиям при воздействии отдельных заряженных частиц космического пространства.

Усвоение материала, изложенного в настоящем издании, позволит читателям:

· научиться понимать физические основы деградации изделий электроники и микроэлектроники при воздействии радиационных факторов;

· сформировать представления об организационно-техническом обеспечении радиационных испытаний изделий электроники и микроэлектроники;

· ознакомиться с существующими экспериментальными и расчетно-экспери-ментальными методами исследований радиационной стойкости изделий электроники и микроэлектроники.

Понимая невозможность полноценного рассмотрения всех аспектов тематики радиационных эффектов в ПП и ИС в рамках одного издания, авторы ограничились лишь достаточно кратким описанием основных моментов касательно данной проблемы, и только для ионизирующих излучений космического пространства, имея в виду, что образование в изделиях микроэлектроники структурных дефектов и дефектов, связанных с ионизацией, является схожим как для радиационных воздействий КП, так и для факторов ЯВ и АЭС. Однако в конце издания приведен список источников, которые можно порекомендовать для более подробного изучения вопросов, связанных с данной тематикой.

ОСНОВЫ ФИЗИКИ ВЗАИМОДЕЙСТВИЯ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ С ПОЛУПРОВОДНИКАМИ

В современном высокотехнологичном мире ионизирующие излучения довольно часто сопутствуют научной, технической и военной деятельности человека. В первую очередь это касается разработки, хранения и возможного применения ядерного оружия, эксплуатации космической техники и атомных реакторов, проведения научных исследований с применением ускорителей заряженных частиц и изотопных источников, медицины. Во многих случаях эти излучения целенаправленно (ядерное оружие), случайно (аварии на ядерных объектах) или вынужденно (эксплуатация космических аппаратов) воздействуют на системы управления и радиоэлектронную аппаратуру различного назначения, основой которых являются изделия полупроводниковой электроники. Таким образом, вопросы влияния ионизирующих излучений на полупроводниковые приборы и микросхемы является важной народнохозяйственной задачей, и в этой области ведутся масштабные научно-исследовательские и опытно-конструкторские работы.

Основой успешного решения научно-технических задач в данной области является понимание физических основ процессов, протекающих при воздействии ионизирующих
излучений на материалы электронной техники, а также знание характеристик ионизирующих излучений космического пространства, ядерного взрыва и атомных электростанций.





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 1661 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2216 - | 2044 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.