Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение момента инерции физического маятника




ВЫВОД РАСЧЕТНОЙ ФОРМУЛЫ

Физическим маятником называется твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси О, не проходящей через центр масстела точку С (рис. 2.1).

Если маятник выведен из положения равновесия на некоторый угол j, то составляющая силы тяжести уравновешивается силой реакции оси О, а составляющая стремится возвратить маятник в положение равновесия. Все силы приложены к центру масс тела. При этом

. (2.1)

Знак минус означает, что угловое смещение j и возвращающая сила имеют противоположные направления. При достаточно малых углах отклонения маятника из положения равновесия sinj» j, поэтому Ft» -mgj. Поскольку маятник в процессе колебаний совершает вращательное движение относительно оси О, то оно может быть описано основным законом динамики вращательного движения

, (2.2)

где М – момент силы Ft относительно оси О, I – момент инерции маятника относительно оси О, – угловое ускорение маятника.

Момент силы в данном случае равен

M = Ft×l =mgj×l, (2.3)

где l – расстояние между точкой подвеса и центром масс маятника.

С учетом (2.2) уравнение (2.3) можно записать

(2.4)

или

, (2.5)

где .

Решением дифференциального уравнения (2.5) является функция, позволяющая определить положение маятника в любой момент времени t,

j=j0×cos(w0t+a0). (2.6)

Из выражения (2.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с амплитудой колебаний j0, циклической частотой , начальной фазой a0 и периодом, определяемым по формуле

, (2.7)

где L=I/(mg) – приведенная длина физического маятника, т. е. длина такого математического маятника, период которого совпадает с периодом физического маятника. Формула (2.7) позволяет определить момент инерции твердого тела относительно любой оси, если измерен период колебаний этого тела относительно этой оси. Если физический маятник имеет правильную геометрическую форму и его масса равномерно распределена по всему объему, в формулу (2.7) можно подставить соответствующее выражение для момента инерции (Приложение 1).

В эксперименте исследуется физический маятник, называемый оборотным и представляющий собой тело, колеблющееся вокруг осей, расположенных на разном расстоянии от центра тяжести тела.

Оборотный маятник состоит из металлического стержня, на котором неподвижно укреплены опорные призмы О1 и О2 и две подвижные чечевицы А и B, которые могут закрепляться в определённом положении с помощью винтов (рис. 2.2).

Физический маятник совершает гармонические колебания при малых углах отклонения от положения равновесия . Период таких колебаний определяется соотношением (2.7)

,

где I – момент инерции маятника относительно оси вращения, m – масса маятника, d – расстояние от точки подвеса до центра масс, g – ускорение силы тяжести.

Применяемый в работе физический маятник имеет две опорные призмы О1 и О2 для подвешивания. Такой маятник называется оборотным.

Сначала маятник подвешивают на кронштейн опорной призмой О1 и определяют период колебаний Т1 относительно этой оси:

(2.8)

Затем маятник подвешивают призмой О2 и определяют Т2:

. (2.9)

Таким образом, моменты инерции I1 и I2 относительно осей, проходящих через опорные призмы О1 и О2, будут соответственно равны и . Масса маятника m и периоды колебаний Т1 и Т2 могут быть измерены с высокой степенью точности.

По теореме Штейнера

, (2.10)

, (2.11)

где I0 – момент инерции маятника относительно оси, проходящей через центр тяжести. Таким образом, момент инерции I0 можно определить,зная моменты инерции I1 и I2.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Снимите маятник с кронштейна, поместите его на трёхгранную призму так, чтобы расстояния от опоры до призм О1 и О2 не были равны между собой. Передвигая чечевицу вдоль стержня, установите маятник в положение равновесия, после чего закрепите чечевицу винтом.

2. Измерьте расстояние d1 от точки равновесия (центр масс С) до призмы О1 и d2 – от С до призмы О2.

3. Подвесив маятник опорной призмой О1, определите период колебаний , где N – число колебаний (не более 50).

4. Аналогичным образом определите период колебаний Т2 относительно оси, проходящей через ребро призмы О2.

5. Подсчитайте моменты инерции I1 и I2 относительно осей, проходящих через опорные призмы О1 и О2, по формулам и , измерив массу маятника m и периоды колебаний Т1 и Т2. Из формул (2.10) и (2.11) определите момент инерции маятника относительно оси, проходящей через центр тяжести (масс) I0. Из двух опытов найдите среднее < I0 >.

6. Передвинув чечевицу А и найдя новое положение центра тяжести С, повторите опыт. Результаты измерений и вычислений занесите в таблицу (см. образец, табл.1).

Таблица 1

  м   м Ось О1 Ось О2   кг·м2
с , с кг·м2 кг·м2 с , с кг·м2 кг·м2
                       
                       




Поделиться с друзьями:


Дата добавления: 2016-11-19; Мы поможем в написании ваших работ!; просмотров: 4862 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2305 - | 2068 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.