Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Роль рекомбинации в эволюции




Эволюционные изменения признаков, детерминируемых одним геном, могут возникнуть в результате сочетания мутационного процесса и отбора. Это сочетание играет наибольшую роль в эволюции бактерий. Оно влияет также на простые признаки многоклеточных организмов, выступая здесь, однако, лишь на вторых ролях в общем процессе изменения.

Эволюция новых сложных признаков у многоклеточных организмов начинается с возникновения изменчивости по множественным генам и завершается закреплением в популяции новой адаптивной комбинации генов. Рекомбинация — важный промежуточный этап в этом процессе.

Процесс начинается с мутаций в двух или нескольких генах. Мутантные аллели, в случае если они рецессивны, могут оставаться в течение многих поколений в диплоидном состоянии, не экспрессируясь. Диплоидное состояние представляет собой хранилище для мутационной и полигенной изменчивости, а ключом к нему служит половое размножение; оно создаёт всевозможных рекомбинантов из имеющегося в генофонде «сырья»*.

Биологическая функция пола состоит в производстве множества рекомбинантных типов. Вероятность того, что какая-либо определённая комбинация генов может быть собрана в одном ряду поколений за счет одного лишь мутационного процесса и без полового размножения, практически равна нулю. Рассмотрим возникновение производного генотипа abc от предкового генотипа ABC у гаплоидного организма. Если бы это превращение зависело от ряда мутаций в бесполых линиях, то оно протекало бы крайне медленно. Однако в популяции организма с половым размножением новый генотип abc может образоваться всего за два поколения в результате скрещивания между трёмя линиями, каждая из которых несёт по одному аллелю — a, b или с (Wright, 1931; Miller, 1932*).

Процесс рекомбинации слеп в отношении адаптивной ценности образующихся рекомбинантов. Он механически создаёт как негодные, так и полезные в адаптивном смысле типы рекомбинантов. Совершенно очевидно, что желательно свести долю первых до минимума. В любом сложном организме чужие гены из отдаленно родственной популяции вряд ли могут гармонично сочетаться с коадаптированными генами нативной популяции. Один из путей снижения доли плохо адаптированных рекомбинантов состоит поэтому в возведении преград, препятствующих широкой гибридизации.

Организация популяций в нескрещивающиеся между собой биологические виды, каждый из которых поддерживает свой особый коадаптированный генофонд, представляет собой, таким образом, естественное следствие полового размножения. Биологические виды — практическое следствие полового размножения. Для рекомбинации необходим половой механизм, а пол в свою очередь требует видовой организации (Dobzhansky, 1937b*). Вопрос этот рассмотрен также в работе Grant, 1981a*.

Процесс рекомбинации, действуя в границах вида, даёт широкое разнообразие рекомбинантов. Некоторые из них могут оказаться более совершенными по степени адаптации. Проблема перемещается теперь с создания многочисленных рекомбинантных типов на сохранение некоторых лучших из них. Половой механизм, создающий в одном поколении ценное сочетание генов, в следующем поколении неумолимо вновь разъединит их. Теперь решающий момент заключается в том, чтобы закрепить новые, более совершенные рекомбинанты.

Отбор мог бы в принципе постепенно заменить предковое сочетание генов каким-либо новым их сочетанием. Но отбор — это слишком неэффективный и медленный способ закрепления новой генной комбинации в обширной свободно скрещивающейся популяции.

Более благоприятные условия для закрепления новой адаптивной генной комбинации создаёт инбридинг, сопровождающийся отбором среди продуктов последнего (Grant, 1963; Shields, 1982**).

Инбридинг может вызываться различными причинами. Малые размеры популяции вынуждают свободно скрещивающийся организм к инбридингу. Локализованные типы расселения в обширной популяции также способствуют инбридингу (Bateman, 1950; Shields, 1982*). Система скрещивания, благоприятствующая родственным скрещиваниям или самооплодотворению, приведет к инбридингу независимо от величины популяции. Два важных особых случая закрепления генных комбинаций с помощью инбридинга и отбора обсуждаются в дальнейшем при рассмотрении дрейфа генов (гл. 16) и квантового видообразования (гл. 24 и 25).

Формирование и закрепление рекомбинантных типов требует различных, и в сущности несовместимых, условий: свободного скрещивания в одних случаях и инбридинга — в других. Эта несовместимость может быть преодолена чередованием циклов широкого свободного скрещивания и инбридинга. Так, популяция, которая обычно бывает многочисленной, может проходить через «узкое горлышко» низкой численности. В преимущественно самооплодотворяющейся группе растений или животных могут время от времени наступать периоды свободного скрещивания.

Инбридинг представляет собой половое размножение в ограниченной форме. Организмы могут сделать ещё один шаг в сторону его ограничения, совершенно отказавшись от полового размножения на протяжении короткого или длинного ряда последовательных поколений. Чередование одного полового поколения с рядом бесполых поколений — благоприятное компромиссное решение, делающее возможным как образование новых комбинаций генов, так и их последующую репликацию; об этом писали Райт (Wright, 1931*), а позднее и другие авторы. Жизненные циклы, в которых существует равновесие между половыми и бесполыми поколениями, фактически более или менее обычны во всех царствах эукариот*.

В итоге мы располагаем одним набором эволюционных сил — сочетанием мутационного процесса и отбора, позволяющим дать адекватное объяснение первоначальным стадиям эволюции и изменениям простых признаков у высших организмов, Исследователи молекулярной эволюции иногда склонны подчеркивать всеобщее значение системы «мутационный процесс — отбор» (например, Beadle, 1963; Jukes, 1966*). Они пытаются также объяснять в этих терминах органическую эволюцию вообще (Beadle, 1963*).

Однако эволюцию многоклеточных организмов нельзя удовлетворительно объяснить с помощью системы «мутационный процесс—отбор». Сложность структуры и функций таких организмов требует столь же сложных генных комбинаций. Это требование выдвигает рекомбинацию "на первый план. Затем развивается ряд генетических систем, способствующих рекомбинации и регулирующих её: пол, вид, инбридинг и вторичная асексуальность.

 

 





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 1921 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2899 - | 2640 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.