Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пример математического моделирования физического процесса




Основным законом механики является второй закон Ньютона, связывающий силу, действующую на тело, его массу и ускорение, получаемое в результате действия силы. В школьной физике этот закон представляется в следующем виде:

(1)

При этом подразумевается, что сила и масса — постоянные величины. В таком случае и ускорение тоже будет постоянной величиной. Следовательно, уравнение (1) моделирует равноускоренное движение тела с постоянной массой под действием постоянной силы.

Применимость такой модели ограничена. Ее нельзя использовать для расчета движения тел с переменной массой и переменной силой. Например, при полете ракеты ее масса уменьшается за счет выгорания топлива, т.е. масса является функцией времени: m(t). Вследствие этого ускорение тоже становится переменной величиной и математическая модель изменится:

Учтем, что ускорение — это производная от скорости (v) по времени, и опишем функцию изменения массы со временем (пусть она будет линейной); получим следующую математическую модель движения:

(2)

Здесь m0 — начальная масса ракеты, q (кг/с) — параметр, определяющий скорость сгорания топлива. Уравнение (2) — это дифференциальное уравнение, в отличие от линейного алгебраического уравнения (1). Математическая модель усложнилась! Решать уравнение (2) значительно сложнее, чем (1). Если же учесть еще и возможность изменения со временем силы F(t) (сила тяги ракетного двигателя в процессе запуска — переменная величина), то модель станет еще сложнее:

(3)

При движении тел в атмосфере (или в жидкой среде) необходимо учитывать сопротивление среды — силу трения. Сила трения имеет две составляющие: пропорциональную первой степени скорости тела и пропорциональную ее квадрату. Теперь уравнение движения примет вид:

(4),(5)

Здесь k1 и k2 — эмпирические коэффициенты. Уравнение (5) связывает скорость с перемещением. Модель (4)–(5) стала ближе к физически реальной ситуации, но сложнее с математической точки зрения. Используя ее, можно получить ответы на практически важные вопросы. Например: при заданной F(t) определить, через сколько времени и на какой высоте ракета достигнет первой космической скорости. Или решить обратную задачу: какой должна быть сила тяги двигателя для того, чтобы на заданной высоте ракета достигла первой космической скорости? Если учитывать еще тот факт, что коэффициенты k1 и k2 — переменные величины, поскольку они зависят от плотности атмосферного воздуха, которая уменьшается с высотой, математическая модель (4)–(5) становится достаточно сложной. Решение на основе такой модели задач, сформулированных выше, требует использования численных методов и компьютера.





Поделиться с друзьями:


Дата добавления: 2015-05-05; Мы поможем в написании ваших работ!; просмотров: 2818 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2510 - | 2156 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.