Лекции.Орг
 

Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника


Энтропия



Из формул (2.42) и (2.47) следует, что и

Учтем, что количество тепла Q2, отданного холодильнику отрицательно. Тогда последнее равенство можно записать:

. (2.48)

Отношение Q/T называется приведенной теплотой.

Приведенная теплота, переданная системе нагревателем, при бесконечно малом ее изменении, равна δQ/Т. Можно показать, что для любого обратимого кругового процесса сумма приведенных теплот равна нулю. Тогда выражение (2.48) в общем, виде может быть записано как:

(2.49)

Равенство нулю интеграла по замкнутому контуру означает, что в обратимом процессе подинтегральное выражение есть полный дифференциал некоторой функции S, зависящей только от состояния системы. Функция S называется энтропией.

Таким образом

(2.50)

Из формулы (2.49) следует, что для обратимых процессов изменение энтропии

ΔS = 0 . (2.51)

Можно показать, что для необратимых неравновесных процессов, происходящих в замкнутой системе, энтропия возрастает

ΔS > 0 (2.52)

Соотношения (2.51) и (2.52) объединяются в неравенство Клаузиуса:

ΔS≥0

т.е. энтропия замкнутой системы либо возрастает, либо остается постоянной.

Так как реальные процессы необратимы, то можно утверждать, что все процессы, протекающие в замкнутой системе, ведут к увеличению энтропии. Это утверждение, называемое принципом возрастания энтропии, является еще одной формулировкой второго закона термодинамики.

Физический смысл энтропии выяснил Л. Больцман, который показал, что энтропия связана с термодинамической вероятностью состояния системы. Термодинамическая вероятность w определяется как число способов, которыми может быть реализовано данное состояние системы. Согласно Больцману, связь S и w выражается формулой:

S = k lnw (2.53)

где k – постоянная Больцмана.

 





Дата добавления: 2015-09-20; просмотров: 113 | Нарушение авторских прав


© 2015-2017 lektsii.org.

Ген: 0.006 с.