Лекции.Орг
 

Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника


Эмиссионные явления и их применение



Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего наблюдается явление испускания электронов, или электронной эмиссии. В зависимости от способа сообщения электронам энергии различают термоэлектронную, фотоэлектронную, вторичную электронную и автоэлектронную эмиссии.

1. Термоэлектронная эмиссия –это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растёт и явление термоэлектронной эмиссии становится заметным.

Исследование зависимостей термоэлектронной зависимости можно привести с помощью простейшей двухэлектродной лампы – вакуумного диода, представляющего собой откачанный баллон, содержащий 2 электрода: катод K и анод А. В простейшем случае катодом служит нить из тугоплавкого металла, накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, как это показано на рисунке 1, то при накаливании катода и подачи на анод положительного напряжения (относительно катода) в анодной цепи возникает ток. Если поменять полярность батареи Ба, то ток прекращается, как бы сильно катод не накаливали. Следовательно катод испускает отрицательные частицы – электроны.

 
 

Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока от анодного напряжения - вольт-амперную характеристику (рис 2.), то оказывается, что она не является линейной, т. е. для вакуумного диода закон Ома не выполняется.


 
 

Зависимость термоэлектронного т ока от анодного описываетсязаконом трёх вторых:

,

где - коэффициент, зависящий от формы и размеров электродов, а также от их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максимального значения , называемоготоком насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряжённости поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщенияхарактеризует эмиссионную способностьматериала катода.Плотность тока определяется формулой Ричардсона – Дешмана,выведенной теоретически на основе квантовой статистики:

,

где - работа выхода электронов из катода, - термодинамическая температура, - постоянная, теоретически одинаковая для всех металлов.

На рисунке 2 представлены ВАХ для двух температур катода: и , причём . С повышением температуры катода испускание электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При наблюдается анодный ток, т. е. некоторые электроны, эмитируемые катодом, обладают энергией, достаточной для преодоления работы выхода и достиженияанода без приложения электрического поля.





Дата добавления: 2015-09-20; просмотров: 92 | Нарушение авторских прав


© 2015-2017 lektsii.org.

Ген: 0.01 с.