Лекции.Орг
 

Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника


Электрические методы и средства контроля



Электрические методы основаны на создании в контролируемом объекте электрического поля либо непосредственным воздействием на него электрическим возмущением (например, спектростатическим полем, полем постоянного или переменного стационарного тока), либо косвенно с помощью воздействия возмущениями неэлектрической природы (например, тепловым, механическим и др.). В качестве первичного информативного параметра используются электрические характеристики объекта контроля.

Так, электроемкостный метод контроля (ЭМК) предусматривает введение объекта контроля или его исследуемого участка в электростатическое поле и определение искомых характеристик материала по вызванной им обратной реакции на источник этого поля. В качестве источника поля применяют электрический конденсатор, который является одновременно и первичным электроёмкостным преобразователем (ЭП), так как осуществляет преобразование физических и геометрических характеристик объекта контроля в электрический параметр. Обратная реакция ЭП проявляется как изменение его интегральных параметров, чаще всего двух параметров, из которых один характеризует "емкостные" свойства ЭП, а другой — диэлектрические потери (например, емкость и тангенс угла потерь — составляющие комплексной проводимости). Эти параметры являются первичными информативными параметрами ЭМК.

Информативность ЭМК определяется зависимостью первичных информативных параметров ЭП от характеристик объекта контроля — непосредственно от электрических характеристик (например, диэлектрической проницаемости и коэффициента диэлектрических потерь) и геометрических размеров объекта контроля. Косвенным путем с помощью ЭМК можно определять и другие физические характеристики материала: плотность, содержание компонентов в гетерогенных системах, влажность, степень полимеризации и старения, механические параметры, радиопрозрачность и пр. К наиболее информативным геометрическим параметрам объекта контроля следует отнести толщину пластин, оболочек и диэлектрических покрытий на проводящем и непроводящем основаниях, поперечные размеры линейно-протяженных проводящих и диэлектрических изделий (нитей, стержней, лент, прутков), локализацию проводящих и диэлектрических включений и др. (рис. 1).

Следует отметить, что информативные параметры ЭП зависят также от его конструкции и электрических характеристик среды, в которую помещен объект контроля. Первое обстоятельство учитывается при оптимизации конструкции ЭП, второе обычно является причиной возникновения мешающих контролю факторов. Как видно из рис. 1, в качестве первичного информативного параметра наиболее целесообразно использовать емкость ЭП и тангенс угла потерь. Однако для изучения анизотропных свойств объекта контроля необходимо пользо-ваться диаграммой зависимости диэлектрических параметров от направления вектора напряженности поля, созданного в объекте контроля. По назначению электроемкостные методы контроля могут быть классифицированы на три группы: измерение параметров состава и структуры материала, определение геометрических размеров объекта контроля, контроль влажности.

Влажность измеряется с помощью влагомеров. Выделение этого метода в отдельную группу объясняется, во-первых, наиболее широким применением ЭМК для контроля влажности, а во-вторых, рядом особенностей контроля, обусловленных влиянием видов влаги на свойства материалов. Так, если вода входит в состав материала как свободная (гигроскопическая), то ее относительная диэлектрическая проницаемость е = 80, в то время, как для воды, абсорбируемой в виде монослоя, е = 2,5. В случае электролитической поляризации диэлектрическая проницаемость влажной гетерогенной системы может превышать значение проницаемости самой воды.

Применение ЭМК характеризуется следующими основными особенностями:

Рис. 1 Схема воздействия характеристик объекта контроля на электрические параметры электроемкостного преобразователя. Корреляционные связи между контролируемыми и информативными параметрами (сплошная линия — сильные, штриховая — слабые)

Рис. 2. Конструкция проходных ЭП с измерением емкости: а—в — полной; г— д — частичной; е,ж —перекрестной; 1 — высокопотенциальный электрод; 2 — низкопотенциальный электрод; 3 — объект контроля; 4 и 5 — охранные электроды; 6 — индикатор; 7 — источник питания

Накладные ЭП характеризуются большой неоднородностью создаваемого ими электростатического поля в объекте контроля с максимальным значением напряженности поля (следовательно и максимальной чувствительностью) непосредственно у поверхности электродов и быстрым затуханием поля по мере удаления от электродов. В связи с этим использование накладных ЭП обычно требует осуществления мер по компенсации влияния контактных условий (шероховатость поверхности, ее загрязнение и пр.).

Для контроля размеров поперечного сечения линейно-протяжных изделий (например, проволоки, ленты, полосы, фольги, прутов и пр.) применяют проходные ЭП (рис. 2). В зависимости от схемы включения электродов и объекта контроля конструкции ЭП бывают двух- и трехзажимными. Их работа основана на измерении полной или частичной емкости. Контроль может осуществляться и по так называемой схеме с перекрестной емкостью (например, включение проходных ЭП по схеме, показанной на рис. 2).

Контроль твердых дисперсных (сыпучих) материалов допускает большую свободу в выборе конструкции ЭП, так как контролируемая среда может принять любую форму в соответствии с применяемой конструкцией ЭП. Чаще всего ЭП выполняют в виде сосуда, заполняемого контролируемой средой, или в виде преобразователя, погружаемого в эту среду. Несколько конструкций ЭП такого вида приведено на рис.3. Контролируемыми параметрами в данном случае являются степень дисперсности среды, физико-механические параметры частиц (например, их состав, влажность), состав полидисперсных сред.

Рис. 3. ЭП для контроля сыпучих материалов: а—в — погружные; г — типа сосуда; д — типа сосуда прессовым устройством для уплотнения пробы; 1 — низко потенциальный электрод; 2 — высокопотенциальный электрод; 3 — изоляционное основание

Так, при измерении одного из параметров на результат контроля оказывают влияние другие параметры, являющиеся мешающими факторами; б) возможность проведения бесконтактных измерений в динамическом режиме, что играет важную роль при автоматизации процесса контроля; в) ЭМК позволяет получить информацию о средних значениях контролируемых параметров в сравнительно больших объемах материала или локализовать поле в определенном участке, а также на определенной глубине исследуемого материала.





Дата добавления: 2015-09-20; просмотров: 143 | Нарушение авторских прав


© 2015-2017 lektsii.org.

Ген: 0.005 с.